The z-transform is the most general concept for the transformation of discrete-time series. The Laplace transform is the more general concept for the transformation of continuous time processes.
For example, the Laplace transform allows you to transform a differential equation, and its corresponding initial and boundary value problems, into a space in which the equation can be solved by ordinary algebra. The switching of spaces to transform calculus problems into algebraic operations on transforms is called operational calculus. The Laplace and z transforms are the most important methods for this purpose.
Click Here For More Digital Signal Processing - Z Transform - Lecture PPT
For example, the Laplace transform allows you to transform a differential equation, and its corresponding initial and boundary value problems, into a space in which the equation can be solved by ordinary algebra. The switching of spaces to transform calculus problems into algebraic operations on transforms is called operational calculus. The Laplace and z transforms are the most important methods for this purpose.
Click Here For More Digital Signal Processing - Z Transform - Lecture PPT
0 comments:
Post a Comment